Seismic and Mineral Exploration: Time for a New Relationship

Don Pridmore
A late starter….

Strong demand for expansion of mining activities:
Necessity to delineate extension of known mineralisations at greater depths
Need to define new exploration targets, often beyond the reach of potential field methods
Exploration of deeper targets by drilling – too expensive
No choice - try seismic methods

Seismic exploration in Hard Rock environments

Moore, et al. Science 16 November 2007:

3D Seismic: Nankai Trough subduction zone

Slumps

Accretionary prism thrusts

Décollement

Oceanic crust

Megasplay fault

Moore, et al. Science 16 November 2007:
OUTLINE

• Seismic reflection method
• Performance in hydrocarbon exploration
• Why has it not been successful in mineral exploration?
• Derisking the application of seismic
• Case histories
• Summary
Seismic Data acquired as either ‘2D’ or ‘3D’

3D ‘Greenfields’

3D ‘Brownfields’

2D Seismic Reflection
Seismic Acquisition
HOW DOES IT WORK?

• Reflections occur at changes in acoustic impedance (Density*Velocity).
 Eg abrupt changes in:
 lithology and alteration
 at
 bedding planes, faults, shears, intrusions etc
SYNTHETIC MODELLING

- Wide scattering

- Forward modelling of possible geological scenarios is crucial for survey planning

- 3D effects
 Implications for targeting
SEISMIC DETECTABILITY

P-wave Velocity times Density

- Felsic volcanics
- Massive sulphides
WHAT CAN SEISMIC SEE?

Resolution maintained with depth

Minimum resolvable bed thickness
- ~ 25m (top and bottom resolvable)

Minimum detectable bed thickness
- ~ 5m or less

Minimum fault throw
- ~ 10m

Horizontal Resolution
- ~ 25m across
• Can investigate to large depths
• Provides continuous maps of layer boundaries and structures
• High Resolution
• Maintains resolution with depth
SEISMIC IN MINERAL EXPLORATION

With exceptions rarely used because:

• Technical issues

 Impact of high velocity and complex geometry on ‘learned behaviour’ from hydrocarbon exploration

 Lack of understanding of ‘seismic’ rock properties

• Cost relative to alternatives (drilling, geophysics)
THE OPPORTUNITY

• Faster screening around initial discovery
• Better conceptual understanding of geology and mineralisation
 ➢ Optimise infrastructure capacity and placement
 ➢ More cost effective brownfields exploration
• Better mapping of structures for mine planning and mine safety
HiSeis Innovation

Oil and Gas Seismic
- ‘Simple’ geology
- Seismic proven success

Minerals Seismic
- Complex geology with high velocity
- Adaption of all aspects of the method required
IS SEISMIC SUITABLE AT YOUR SITE?

How do we de-risk a seismic survey?

- Seismic Survey
- Site Visit / Noise Test
- Rock Property Measurements
- Synthetic Modeling
- Vertical Seismic Profiling/ FWS
ROCK PROPERTY MEASUREMENTS

- Measure transit time through core, half core or hand specimen
- Need flat ends
- Multiple samples per rock unit
SONIC AND DENSITY LOGS
SHEAR ZONE SEISMIC LOGS

Velocity Density Acoustic Impedance
VSP’s provide the macro-scale linkage between geological/petrophysical variations and the bulk in-situ response measured using surface seismic reflection techniques.
VSP

Strong reflectors in VSP data.
SEISMIC TEXTURE

Strong semi-continuous reflections

Shear

Multiple discontinuous reflections
Objectives

- Map the mineralised shear system
- Generate targets at depth
Figure 1: Section showing lithology and mineralization on traces of BBDE001 and BBDE002 with preliminary interpretation.
CASE STUDY – BULLABULLING

Cross-section on Seismic Line Showing Planned Drill Holes
CASE STUDY – KAMBALDA

Milovan et al 2013

Objectives

• Map subsurface stratigraphy and structure to 1km depth

• Map the basalt/ultramafic contact

• Map structures that offset this surface

• Detect Mineralisation
KAMBALDA FAULTING

Alpha Island fault (previous)
Interpreted fault plane

Alpha Island fault (previous)

Depth slice at 768m

Depth slice at 1266m
HiSeis Data: Kambalda WA

RMS amplitude: extracted 10 m above and 4 below the contact
Regional Geology: Iberian Pyrite Belt

- Known Sulphide Deposits
 - Shale and Greywacke
 - Volcano-Sedimentary Complex
 - Phyllite-Quartzite Unit

Portugal

Spain

0 25 50 (Km)
Iberian Pyrite Belt: Structure & Stratigraphy

<table>
<thead>
<tr>
<th>System</th>
<th>Series</th>
<th>Stage</th>
<th>Baixo Alentejano Flysch Group (allochthonous)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboniferous</td>
<td>Visean</td>
<td>Early Visean</td>
<td>Mudstone, siltstone, wacke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Late Visean B</td>
<td></td>
</tr>
<tr>
<td>Devonian</td>
<td>Upper</td>
<td>Strunian</td>
<td>Baixo Alentejano Flysch Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Late Famennian</td>
<td>Chert, Massive Sulphide, Rhyolite, Stockwork</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Volcano-Sedimentary Complex (autochthonous)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mudstone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phyllite-Quartzite Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phyllite, quartzite, lst.</td>
</tr>
</tbody>
</table>
Neves-Corvo: Big Massive Sulphide Deposits

2P RESERVES (30 June 2012)
24.1Mt @ 3.1% Cu
22.7Mt @ 7.4% Zn, 1.7% Pb, 70 g/t Ag
3D SURVEY GRID OVER MINE
3D Seismic Survey Depth Slice at 894 m

High Resolution
Rx 90 x 15m
Tx 90 x 45

Survey Block
6.4 x 4.6 km

Note faults cutting Lombador into segments
3D Seismic Survey at Neves-Corvo – Section

- Very good correlation between mineralization and strong reflectors
- Targeting more effective, saving time and money.

NW View of section through Semblana Massive Sulfide

massive sulphide footwall contact
Some success stories

"A high-resolution 3D seismic survey has now been completed over a 21 square kilometer area surrounding the Neves-Corvo mine. Preliminary results have clearly imaged the major Semblana deposit, verifying the effectiveness of this new tool in the search for blind massive sulphide deposits"

Lundin Mining news release to the Toronto stock exchange. July 21, 2011

"Based on 3D models created using recently acquired seismic data, 2 new diamond drill holes were planned, each planned to drill to a minimum depth of 600m. A new prospective ultramafic-amphibolite sequence identified below the current deposit and further significant intersections from existing deposit were discovered"

Announcement from Bullabulling Gold Limited to the ASX, September 6, 2012 and October 30, 2012.
SUMMARY

Industry Solution
Drilling

• Data in only 1D.
• Slow: 1 month to drill 1km.
• Costly: $250K per km.

Problem
Brownfield exploration at depths greater than 3-500m.

• Detect structures & alteration.
• Directly detect some mineralisation styles.
• Cost competitive @ $250K/km².
• Rapid results.
• Low environmental impact.
• Faster 3D targeting of drilling.

Seismic Solution
Acknowledgements

Consolidated Minerals Ltd
Bullabulling Gold Ltd
Northern Star Resources Ltd
Lundin Mining
MMG