New Approaches to Detecting Geochemical Anomalies

A short course presented at the:

AIG-SMEDG SYMPOSIUM

By

Neil Rutherford
Rutherford Mineral Resource Consultants

David Cohen
School of Geology, University of NSW

Thursday, 11 August 2002
3.6.1. CO$_2$, O$_2$, SO$_2$ 67
3.6.2. Volatile Metal Compounds 73
3.7. Case Studies: Soils, Mrangelli and McKinnons, Cobar 75
3.8. Case Study: Stream Sediment Orientation Survey, Northeastern NSW 85
 3.8.1. Outline 85
 3.8.2. Objectives of Survey 85
 3.8.3. General Design of Survey 85
 3.8.4. Description of Region 86
 3.8.5. Sampling 86
 3.8.6. Orientation Survey 87
3.9. Case Study: Vegetation versus Stream Sediments, Northeastern NSW 89
 3.9.1. Introduction 89
 3.9.2. Area Description 91
 3.9.3. Sampling and Analysis 92
 3.9.4. Results 92
 3.9.5. Discussion 94
 3.9.6. Conclusion 96
3.10. Case study: Stream Sediments, Timbarra 103
4. NEW GENERATION SELECTIVE GEOCHEMICAL EXTRACTIONS 110
 4.1. Introduction 110
 4.1.1. Partial Leaches and Total Leaches 112
 4.2. Some Comments on the Use of Selective Extractions in Geochemical Exploration in Arid Terrains. 114
 4.2.1. Introduction 114
 4.2.2. Terminology 115
 4.2.3. Sampling Procedures 116
 4.2.4. Data Processing 118
 4.2.5. Selective Extractions as Guides to Dispersion Processes 121
 4.2.6. Research Directions in Selective Extractions 123
 4.3. Case Study: Selective Extractions, Ruby Star, Arizona. 124
 4.3.1. Introduction 124
 4.3.2. Sampling 126
 4.3.3. Experimental 127
 4.3.4. Results 130
 4.3.5. Discussion 135
 4.3.6. Conclusions 137
 4.4. Case Studies: Multimedia Comparison, McKinnons Region, Cobar. 138
 4.4.1. Mafeesh Anomaly – Pisolite and Partial Leach Soil Geochemistry - No Cover 138
 4.4.2. Anomaly P4 – Pisolite, Soil and RAB Geochemistry - Shallow Cover 139
 4.4.3. Anomaly LP3 – Soil and RAB Geochemistry - Thick Transported Cover 141
 4.5. Case study: Transported Regolith, CSA, Cobar 143
 4.5.1. Exploration In Areas Of Residual Cover - McKinnons And Mrangelli 143
 4.5.2. Exploration In Areas Of Deep Transported Cover - CSA 145
 4.5.3. Conclusion 146
 4.6. Case Study: Osborne Cu-Au Mineralisation Cloncurry District, NW Queensland 148
 4.7. Case Studies: Assessment of Regional Geology & Structures for Leakage 149
 4.7.1. Structurally Controlled Regional Leakage Geochemical Anomalism 149
 4.7.2. Delineation of Geology and Alteration with Geochemistry 149
5. IDENTIFYING MULTIVARIATE GEOCHEMICAL ANOMALIES USING STATISTICAL METHODS

5.1. Introduction 150
5.2. Statistical Definitions of "Anomaly" 151
5.3. Regression and Anomaly Detection 153
5.4. Clustering and Anomaly Detection 157
5.5. Case study: NRAC Stream Sediment Survey 157
5.6. Case Study: Comparison of UNN with k-means Clustering 158
 5.6.1. K-means Clustering 159
 5.6.2. Neural Networks 160
 5.6.3. Study Area 161
 5.6.4. Data Set 162
 5.6.5. Data Processing 163
 5.6.6. Results 165
 5.6.7. Discussion 182
 5.6.8. Conclusion 183

6. CONCLUSION? - KEY ELEMENTS IN THE DESIGN AND IMPLEMENTATION OF GEOCHEMICAL SURVEYS 184

7. CONTACTS: 199
1. **INTRODUCTION**

In many regions of the world, including Australia, large numbers of mineral deposits have been delineated using exploration geochemistry. A significant proportion of exploration expenditure since the 1960's has, therefore, been directed towards geochemical exploration, including regional reconnaissance programs, localised follow-up surveys and exploratory drilling. In deeply weathered terrains, exploration geochemistry has generally proved more successful in targeting mineralisation than exploration geophysics.

The objective of exploration geochemistry today remains unchanged - to delineate geochemical signatures related to mineralisation. However, the science of geochemistry is turning the corner. The gross oversimplification of past survey procedures and interpretive methods have often had a serious negative impact on the effective use of geochemical methods in exploration during the recent past. Current developments in areas as diverse as landscape evolution and analytical chemistry methods have prompted a review both the factors that generate anomalies and, hence, the definition of the term "anomaly" and the way in which we undertake and interpret exploration geochemistry. Utilisation of case histories and technological advances will demonstrate that the traditional “approved” approach practiced by many companies leaves “gaping holes” through which an ore body can quietly slip. These holes represent opportunities for mineral discovery at low cost for competitors who possess the skills to recognise the deficiencies or omissions of others, (Hoffman, S.J., 1989).

We have become used to prescribed or expected patterns of geochemical anomalism that fit into somewhat inadequate conceptual models of geochemical dispersion. Too often, if these prescribed patterns of “response” are not present, we walk away. Our apparent inability to routinely resolve subtle geochemical anomalism, such that might be expected from mineralisation in areas with cover or that is buried deeply, is largely due to the way in which we try to apply our outcrop geochemical experience in environments where there is no outcrop. It is no longer a world of log normal decay curves, means and standard deviations and big numbers, but one of noisy backgrounds, erratic distribution of geochemically variable transported lithotypes, structural leakage geochemistry, presence or absence of solute species irrespective of magnitude and values that push the lower limits of the analytical technology.

Although there are large tracts of relatively un-explored geological terrain in various parts of the world where routine geochemical sampling followed by simple basic interpretation will define mineralisation, it is much less likely the case in the more extensively explored terrains as in Australia, Europe or North America. In these “mature” terrains current exploration programs are being increasingly directed towards mineralisation with subtle or no surface expression. Here the application of geochemical techniques has had to evolve from recognising geochemical signatures of mineralization in leached outcrops and residual soils, towards identification of targets that are masked by transported cover or barren weathered zones. This requires more sophisticated geochemical models and methods, especially at the reconnaissance stage, with attention focussed on novel or refined approaches to sampling media, sample collection and processing, chemical analysis, data processing and data interpretation.

Recent advances, including the use of partial and selective extraction methods, vapour chemistry, groundwater and biogeochemistry, have proven capable of detecting weak dispersion haloes through deeply weathered and/or transported overburden. These advances have been linked to progressively better understanding of the processes and results of different styles of landscape evolution, regolith development and the transportation of metals.

A review of the chemical processes of weathering rock and sulphides and element mobility are given. Despite the extensive recent literature on the subject there is often a poor understanding of the basics of what is, in essence, a simple process complicated by erosional and depositional activity.
Strategies for implementing geochemical surveys, including data processing, integration and interpretation strategies, at both regional and follow-up scales will be considered with various case studies selected from within Australia and elsewhere. The course will demonstrate the potential of routine everyday geochemical methodology (with some adaptation to suit the geological, geophysical and geochemical environment of interest and different choices of analytical techniques) to resolve anomalism sourced from the small to the gigantic body of mineralisation.